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This paper documents a large set of heretofore unpublished details Collins used in his parser, such
that, along with Collins’ thesis (Collins, 1999), this paper contains all information necessary to
duplicate Collins’ benchmark results. Indeed, these as-yet-unpublished details account for an
11% relative increase in error from an implementation including all details to a clean-room
implementation of Collins’ model. We also show a cleaner and equally–well-performing method
for the handling of punctuation and conjunction, and reveal certain other probabilistic oddities
about Collins’ parser. We analyze not only the effect of the unpublished details, but also re-
analyze the effect of certain well-known details, revealing that bilexical dependencies are barely
used by the model and that head choice is not nearly as important to overall parsing performance
as once thought. Finally, we perform experiments that show that the true discriminative power
of lexicalization appears to lie in the fact that unlexicalized syntactic structures are generated
conditioning on the head word and its part of speech.

Introduction

Michael Collins’ parsing models (Collins, 1996; Collins, 1997; Collins, 1999) have been
quite influential in the field of natural language processing. Not only did they achieve
new performance benchmarks on parsing the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz, 1993), and not only did they serve as the basis of Collins’ own future
work (Collins, 2000; Collins and Duffy, 2002), but they also served as the basis of im-
portant work on parser selection (Henderson and Brill, 1999), an investigation of corpus
variation and the effectiveness of bilexical dependencies (Gildea, 2001), sample selection
(Hwa, 2001), bootstrapping non-English parsers (Hwa, Resnik, and Weinberg, 2002) and
for the automatic labeling of semantic roles and predicate-argument extraction (Gildea
and Jurafsky, 2000; Gildea and Palmer, 2002), as well as that of other research efforts.

Recently, in order to continue our work combining word sense with parsing (Bikel,
2000) and the study of language-dependent and -independent parsing features (Bikel
and Chiang, 2000), we built a multi-lingual parsing engine that is capable of instantiating
a wide variety of generative, statistical parsing models (Bikel, 2002).1 As an appropriate
baseline model, we chose to instantiate the parameters of Collins’ Model 2. This task
proved more difficult than it initially appeared. Starting with Collins’ thesis (Collins,
1999), we reproduced all the parameters described, but did not achieve nearly the same
high performance on the well-established development test set of Section 00 of the Penn
Treebank. Together with Collins’ thesis, this paper contains all the information neces-
sary to replicate Collins’ parsing results.2 Specifically, this paper describes all the as-yet-
unpublished details and features of Collins’ model, and some analysis of the effect of
these features with respect to parsing performance, as well as some comparative anal-� Department of Computer and Information Science, 3330 Walnut Street, Philadelphia, PA 19104.�

This engine is publicly available by visiting http://www.cis.upenn.edu/~dbikel/software.html.�
In the course of replicating Collins’ results, it was brought to our attention that several other researchers

had also tried to do this, and had also gotten performance that fell short of Collins’ published results. For ex-
ample, Gildea (2001) re-implemented Collins’ Model 1, but obtained results with roughly 16.7% more relative
error than Collins’ reported results using that Model.
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ysis of the effects of published features.3 In particular, implementing Collins’ model
using only the published details causes an 11% increase in relative error over Collins’
own published results. That is, taken together, all the unpublished details have a signifi-
cant effect on overall parsing performance. In addition to the effects of the unpublished
details, we also have new evidence to show that the discriminative power of Collins’
model does not lie where once thought: bilexical dependencies play an extremely small
role in Collins’ models (Gildea, 2001), and head choice is not nearly as critical as once
thought. This paper also discusses the rationale for various parameter choices. In gen-
eral, we will limit our discussion to Model 2, but we make occasional reference to Model
3, as well.

1. Motivation

There are three primary motivations for this work. First, Collins’ parsing model repre-
sents a widely-used and -cited parsing model. As such, if it is not desirable to use it as a
black box (it has only recently been made publicly available), then it should be possible
to replicate the model in full, providing a necessary consistency among research efforts
employing it. Careful examination of its intricacies will also allow researchers to devi-
ate from the original model when they think it is warranted, and accurately document
those deviations, as well as understand the implications of doing so.

The second point is related to the first: science dictates that experiments be replica-
ble, for this is the way we may test and validate them. The work described here comes in
the wake of several previous efforts to replicate this particular model, but this is the first
such effort to provide a faithful and equally–well-performing emulation of the original.

The third motivation is that a deep understanding of an existing model—its intrica-
cies, the interplay of its many features—provides the necessary platform for advance-
ment to newer, “better” models. This is especially true in an area like statistical parsing
that has seen rapid maturation followed by a soft “plateau” in performance. Rather
than simply throwing features into a new model and measuring their effect in a crude
way by using standard evaluation metrics, this work aims to provide a more thorough
understanding of the nature of a model’s features. This understanding is not only use-
ful in its own right, but should help point the way toward newer features to model, or
better modeling techniques, for we are in the best position for advancement when we
understand existing strengths and limitations.

2. Model Overview

The Collins parsing model decomposes the generation of a parse tree into many, small
steps, using reasonable independence assumptions to make the parameter estimation
problem tractable. Even though decoding proceeds bottom-up, the model is defined
in a top-down manner. Every nonterminal label in every tree is lexicalized: the label is
augmented to include a unique head word (and that head word’s part of speech) that
the node dominates. The lexicalized PCFG that sits behind Model 2 has rules of the
form ����� 	 � 	�
������� � ����������������	�
�����	 (1)
where

�
,
���

, � � and � are all lexicalized nonterminals, and
�

inherits its lexical head
from its distinguished head child, � . In this generative model, first

�
is generated, then�

Discovering these details and features involved a great deal of reverse-engineering, and, ultimately,
much discussion with Mike Collins himself and perusal of his code. Many thanks to Mike Collins for his
generosity. As a word of caution, this paper is exhaustive in its presentation of all such details and features,
and we cannot guarantee that every reader will find every detail interesting.
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its head-child � , then each of the left- and right-modifying nonterminals are generated
from the head outward. The modifying nonterminals

� �
and � � are generated condi-

tioning on
�

and � , as well as a distance metric (based on what material intervenes
between the currently-generated modifying nonterminal and � ) and an incremental
subcategorization frame feature (a multiset containing the arguments of � that have
yet to be generated on the side of � in which the currently-generated nonterminal falls).
Note that if the modifying nonterminals were generated completely independently, the
model would be very impoverished, but in actuality, by including the distance and
subcategorization frame features, the model captures a crucial bit of linguistic reality,
viz., that words often have well-defined sets of complements and adjuncts, occurring
with some well-defined distribution in the right hand sides of a (context-free) rewriting
system. The process proceeds recursively, treating each newly-generated modifier as a
parent and then generating its head and modifier children; the process terminates when
(lexicalized) preterminals are generated. As a way to guarantee the consistency of the
model, the model also generates two hidden +STOP+ nonterminals as the leftmost and
rightmost children of every parent (see Figure 7 in §4.1).

3. Preprocessing training trees

To the casual reader of Collins’ thesis, it may not be immediately apparent that there are
quite a few preprocessing steps for each annotated training tree, and that these steps
are crucial to the performance of the parser. We identified eleven preprocessing steps
necessary to prepare training trees when using Collins’ parsing model. They are:

1. pruning of unnecessary nodes

2. adding base NP nodes (NPBs)

3. “repairing” base NPs

4. adding gap information (applicable to Model 3 only)

5. relabeling of sentences with no subjects (subjectless sentences)

6. removing null elements

7. raising punctuation

8. identification of argument nonterminals

9. stripping unused nonterminal augmentations

10. “repairing” subjectless sentences

11. head-finding

The order presented above is not arbitrary, as some of the steps depend on results pro-
duced in previous steps. Also, we have separated the steps into their functional units;
an implementation could combine steps that are independent of one another (for clar-
ity, our implementation does not, however). Finally, we note that the final step, head-
finding, is actually needed by some of the previous steps in certain cases; in our imple-
mentation, we selectively employ a head-finding module during the first 10 steps where
necessary.

3
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3.1 Coordinated phrases
A few of the preprocessing steps rely on a notion of a coordinated phrase. The condi-
tions under which a phrase is considered coordinated are slightly more detailed than
described in Collins’ thesis. A node represents a coordinated phrase if� it has a non-head child that is a coordinating conjunction, and� that conjunction is either

– post-head but non-final, or

– immediately pre-head but non-initial (where “immediately” means “with
nothing intervening except punctuation”).4

In the Penn Treebank, a coordinating conjunction is any preterminal node with the label
CC.

This definition essentially picks out all phrases where the head child is truly con-
joined to some other phrase, as opposed to a phrase where, say, there is an initial CC
word, such as an S that begins with the conjunction “But  � � ”.

3.2 Pruning of unnecessary nodes
This preprocessing step simply removes preterminals that should have little or no bear-
ing on parser performance. In the case of the English Treebank, the pruned subtrees are
all preterminal subtrees whose root label is one of !#" "%$'&�$ )( . There are two reasons to
remove these types of subtrees when parsing the English Treebank: in the treebanking
guidelines (Bies, 1995), quotation marks were given the lowest possible priority, and
thus cannot be expected to appear within constituent boundaries in any kind of consis-
tent way, and neither of these types of preterminals—nor any punctuation marks, for
that matter—count towards the parsing score.

3.3 Adding base NP nodes (NPBs)
An NP is basal when it does not itself dominate an NP; such NP nodes are relabeled NPB.
More accurately, an NP is basal when it dominates no other NPs except possessive NPs,
where a possessive NP is an NP that dominates POS, the preterminal possessive marker
for the Penn Treebank. These possessive NPs are almost always themselves base NPs,
and are therefore (almost always) relabeled NPB.

For consistency’s sake, when an NP has been relabeled as NPB, a normal NP node is
often inserted as a parent nonterminal. This insertion ensures that NPB nodes are always
dominated by NP nodes. The conditions for inserting this “extra” NP level are slightly
more detailed than described in Collins’ thesis, however. The extra NP level is added if
one of the following conditions holds:� the parent of the NPB is not an NP� the parent of the NPB is an NP, but constitutes a coordinated phrase (see Fig-

ure 1)� the parent of the NPB is an NP, but

– the parent’s head child is not the NPB and*
Our positional descriptions here, such as “post-head but non-final”, refer to positions within the list of

immediately-dominated children of the coordinated phrase node, as opposed to positions within the entire
sentence.
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NP

NP

NNP

John

CC

and

NP

NNP

Jane

NP

NPB

NNP

John

CC

and

NPB

NNP

Jane

NP

NP

NPB

NNP

John

CC

and

NP

NPB

NNP

Jane
1. Coordinated phrase 2. Base NPs relabeled 3. Extra NP nodes inserted

Figure 1
An NP that constitutes a coordinated phrase.

NP

NPB

the comedian

,

,

NPB

Tom Foolery

NP

NPB

the comedian

,

,

NP

NPB

Tom Foolery
1. Before extra NP addition
(the NPB “the comedian” is the
head child).

2. After extra NP insertion.

Figure 2
A non-head NPB child of NP requires insertion of extra NP.
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VP

VB

need

NP

NPB

DT

the

NN

will

S

to continue

VP

VB

need

NP

NPB

DT

the

NN

will

S

to continue

Before repair. After repair.

Figure 3
An NPB is “repaired”.

– the parent has not already been relabeled as an NPB (see Figure 2)5

In post-processing, when an NPB is an only child of an NP node, the extra NP level is
removed by merging the two nodes into a single NP node, and all remaining NPB nodes
are relabeled NP.

3.4 Repairing base NPs
The insertion of extra NP levels above certain NPB nodes achieves a degree of consis-
tency for NPs, effectively causing the portion of the model that generates children of NP
nodes to have less perplexity. Collins appears to have made a similar effort to improve
the consistency of the NPB model. NPB nodes that have sentential nodes as their final
(rightmost) child are “repaired”: the sentential child is raised so that it becomes a new
right-sibling of the NPB node (see Figure 3).6

While such a transformation is reasonable, it is interesting to note that Collins’
parser performs no equivalent detransformation when parsing is complete, meaning
that when the parser produces the “repaired” structure during testing, there is a spuri-
ous NP bracket.7

3.5 Adding gap information
The gap feature is discussed extensively in chapter 7 of Collins’ thesis, and is applicable
only to his Model 3. This preprocessing step locates every null element preterminal,
finds its co-indexed WHNP antecedent higher up in the tree, replaces the null element
preterminal with a special trace tag and threads the gap feature in every nonterminal
in the chain between the common ancestor of the antecedent and the trace. The only
detail we would like to highlight here is that an implementation of this preprocessing
step should check for cases where threading is impossible, such as when two filler-
gap dependencies cross. An implementation should be able to handle nested filler-gap
dependencies, however.+

Only applicable if relabeling of NPs is performed using a pre-order tree traversal.,
Collins defines a sentential node, for the purposes of repairing NPBs, to be any node that begins with

the letter S. For the Penn Treebank, this defines the set -/.102./354/6702./354/6�8#02.19;:/<70#.�8�= .>
Since, as mentioned above, the only time an NPB is merged with its parent is when it is the only child

of an NP.
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3.6 Relabeling subjectless sentences
The node labels of sentences with no subjects are transformed from S to SG. This step
enables the parsing model to be sensitive to the different contexts in which such sub-
jectless sentences occur as compared to normal S nodes, since the subjectless sentences
are functionally acting as noun phrases. Collins’ example of? @A? @CBEDGFIH�J�KMLNDPOGJRQES�T�HUSCV�O7J�KRQUWRX7YISIT
illustrates the utility of this transformation. However, the conditions under which an
S may be relabeled are not spelled out; one might assume that every S whose subject
(identified in the Penn Treebank with the -SBJ function tag) dominates a null element
should be relabeled SG. In actuality, the conditions are much stricter. An S is relabeled
to SG when the following conditions hold:� one of its children dominates a null element child marked with -SBJ� its head child is a VP� no arguments appear prior to the head child (see §§3.9 and 3.11)

The latter two conditions appear to be an effort to capture only those subjectless sen-
tences that are based around gerunds, as in the “flying planes” example.8

3.7 Removing null elements
This step simply involves pruning the tree to eliminate any subtree that only dominates
null elements. The special trace tag that is inserted in the step that adds gap information
(§3.5) is excluded, as it is specifically chosen to be something other than the null element
preterminal marker (which is -NONE- in the Penn Treebank).

3.8 Raising punctuation
This step is discussed in detail in chapter 7 of Collins’ thesis. The main idea is to raise
punctuation—which is any preterminal subtree where the part of speech is either a
comma or a colon—to the highest possible point in the tree, so that it always sits be-
tween two other nonterminals. Punctuation that occurs at the very beginning or end
of a sentence is “raised away”, i.e., pruned. In addition, any implementation of this
step should handle the case where multiple punctuation elements appear as the initial
or final children of some node, as well as the more pathological case where multiple
punctuation elements appear along the left or right frontier of a subtree (see Figure 4).
Finally, it is not clear what to do with nodes that only dominate punctuation preter-
minals. Our implementation simply issues a warning in such cases, and leaves the
punctuation symbols untouched.

3.9 Identification of argument nonterminals
Collins employs a small set of heuristics to mark certain nonterminals as arguments, by
appending -A to the nonterminal label. This section reveals three unpublished details
about Collins’ argument finding.� The published argument-finding rule for PPs is to choose the first nonterminal

after the head child. In a large majority of cases, this marks the NP argument of
the preposition. The actual rule used is slightly more complicated: the first non-
terminal to the right of the head child that is neither PRN nor a part of speech tagZ

We assume the “G” in the label SG was chosen to stand for the word “gerund”.
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Figure 4
Raising punctuation: perverse case where multiple punctuation elements appear along a frontier
of a subtree.

S

NP-A

NNP

Elizabeth

VP-HEAD

VBD-HEAD

was

VP-A

VBN-HEAD

elected

S-A

NP-HEAD-A

NPB

DT

a

NN

director

Figure 5
Head children are not exempt from being relabeled as arguments.

is marked as an argument. The nonterminal PRN in the Penn Treebank marks
parenthetical expressions, which can occur fairly often inside a PP, as in the
phrase “on (or above) the desk”.\ Children that are part of a coordinated phrase (see §3.1) are exempt from being
relabeled as argument nonterminals.\ Head children are distinct from their siblings by virtue of the head-generation
parameter class in the parsing model. In spite of this, Collins’ trainer actually
does not exempt head children from being relabeled as arguments (see Figure
5).9

3.10 Stripping unused nonterminal augmentations
This step simply involves stripping away all nonterminal augmentations, except those
that have been added from other preprocessing steps (such as the -A augmentation
for argument labels). This includes the stripping away of all function tags and indices
marked by the Treebank annotators.]

It is not clear why this is done, and so in our parsing engine, we make such behavior optional via a
run-time setting.
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NP

NP

NNP

John

CC

and

NP-HEAD

NNP

Jane

[ � NP

NP-HEAD

NNP

John

CC

and

NP

NNP

Jane
NPB

NNP

John

CC

and

NNP-HEAD

Jane

Figure 6
Head moves from right to left conjunct in a coordinated phrase, except when the parent
nonterminal is NPB.

3.11 Repairing subjectless sentences
With arguments identified as described in §3.9, if a subjectless sentence is found to have
an argument prior to its head, this step detransforms the SG so it reverts to being an S.

3.12 Head-finding
Head-finding is discussed at length in Collins’ thesis, and the head-finding rules used
are included in his Appendix A. There are a few unpublished details worth mentioning,
however.

There is no head-finding rule for NX nonterminals, so the default rule of picking
the leftmost child is used.10 NX nodes roughly represent the N’ level of syntax, and in
practice often denote base NPs. As such, the default rule often picks out a less-than-
ideal head child, such as an adjective that is the leftmost child in a base NP.

Collins’ thesis discusses a case where the initial head is modified when it is found
to denote the right conjunct in a coordinated phrase. That is, if the head rules pick out
a head that is preceded by a CC that is non-initial, the head should be modified to be
the nonterminal immediately to the left of the CC (see Figure 6). An important detail is
that such “head movement” does not occur inside base NPs. That is, a phrase headed
by NPB may indeed look like it constitutes a coordinated phrase—it has a CC that is
non-initial but to the left of the currently-chosen head—but the currently-chosen head
should remain as is.11 As we shall see, there is exceptional behavior for base NPs in
almost every part of the Collins parser.

4. Training

The trainer’s job is decompose annotated training trees into a series of head- and modifier-
generation steps, recording the counts of each of these steps. Referring to (1), each � ,�_^

In our first attempt at replicating Collins’ result, we simply employed the same head-finding rule for
NX nodes as for NP nodes. This choice yields different—but not necessarily inferior—results.�`�

In §3.1, we defined coordinated phrases in terms of heads, but here we are discussing how the head-
finder itself needs to determine whether a phrase is coordinated. It does this by considering the potential new
choice of head: if the head-finding rules pick out a head that is preceded by a non-initial CC (“Jane”), will
moving the head to be a child to the left of the CC (“John”) yield a coordinated phrase? If so, then the head
should be moved—except when the parent is NPB.

9
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VP

+STOP+

VB-HEAD

need

ADVP

RB

undoubtedly

NP

NPB

the will

S

to continue

+STOP+

Figure 7
vi (“verb intervening”) feature is true when generating right-hand +STOP+ nonterminal,
because the NP “the will to continue” contains a verb.���

and � � are generated conditioning on previously-generated items, and each of these
events consisting of a generated item and some maximal history context are counted.
Even with all this decomposition, sparse data is still a problem, and so each probability
estimate for some generated item given a maximal context is smoothed with coarser
distributions using less context, whose counts are derived from these “top-level” head-
and modifier-generation counts.

4.1 Verb intervening
As mentioned in §2, instead of generating each modifier independently, the model con-
ditions the generation of modifiers on certain aspects of the history. One such function
of the history is the distance metric. One of the two components of this distance metric is
what we will call the “verb intervening” feature, which is a predicate vi that is true if
a verb has been generated somewhere in the surface string of the previously-generated
modifiers on the current side of the head. For example, in Figure 7, when generating the
right-hand +STOP+ nonterminal child of the VP, the vi predicate is true, because one
of the previously-generated modifiers on the right side of the head dominates a verb,
“continue”.12 More formally, the definition of this feature is most easily defined in terms
of a recursively-defined cv (“contains verb”) predicate, which is true if and only if a
node dominates a verb.

a2bdc �fehg ijjk jjl
mn

child of o a2bdc%p e
if p is not a preterminal,q WPYEQ if
�

is a verb preterminal,r O�DRS7Q otherwise.

(2)

Referring to (2), we define the verb intervening predicate recursively on the 1st-order
Markov process generating modifying nonterminals:

b H c � � e'gts r O�DRS7Q if u�vxw ,a2bIc ��� 
�� ey b H c ��� 
dz e if u�{xw , (3)

and similarly for right modifiers.
What is considered to be a verb? While this is not spelled out, as it happens, it is any

word whose part-of-speech tag is one of !�|P}I$R|P}�~E$R|P}R�E$E|U}��N$R|P}��d$R|P}E��( . That is, the cv���
Note that any word in the surface strings dominated by the previously-generated modifiers will trig-

ger the vi predicate. This is possible because in a history-based model (cf. (Black et al., 1992)), anything
previously-generated—i.e., anything in the history—can appear in the conditioning context.

10
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predicate returns true only for these preterminals and false for all other preterminals.
Crucially, this set omits MD, which is the marker for modal verbs. Another crucial point
about the vi predicate is that it does not include verbs that appear within base NPs. Put
another way, in order to emulate Collins’ model, we need to amend the definition of cv
by stipulating that a2bdc ���U} e'g r O�DRSGQ .
4.2 Skip certain trees
One oddity of Collins’ trainer that we mention here for completeness’ sake is that it skips
certain training trees. For “odd historical reasons”,13 the trainer skips all trees with more
than 500 tokens, where in this context a token is considered to be a word, a nonterminal
label or a parenthesis. This oddity entails that even some relatively short sentences get
skipped because they have lots of tree structure. In the standard Wall Street Journal
training corpus, Sections 02–21 of the Penn Treebank, there are 120 such sentences that
are skipped. Unless there is something inherently wrong with these trees, one would
predict that adding them to the training set would improve a parser’s performance. As
it happens, there is actually a minuscule (and probably statistically insignificant) drop in
performance (see §7.1, Figure 16).

4.3 Unknown words
4.3.1 The threshold problem Collins mentions in Chapter 7 of his thesis that “[a]ll
words occurring less than 5 times in training data, and words in test data which have
never been seen in training, are replaced with the ‘UNKNOWN’ token.” The frequency
below which words are considered unknown is often called the unknown word threshold.
Unfortunately, this term can also refer to the frequency above which words are consid-
ered known. As it happens, the unknown word threshold Collins uses in his parser for
English is 6, not 5.14 To be absolutely unambiguous, words that occur fewer than 6 times,
which is to say words that occur 5 times or fewer in the data are considered “unknown”.

4.3.2 Not handled in a uniform way The obvious way to incorporate unknown words
into the parsing model, then, is simply to map all low-frequency words in the training
data to some special +UNKNOWN+ token before counting top-level events for parame-
ter estimation (where “low-frequency” means “below the unknown word threshold”).
Collins’ trainer actually does not do this. Instead, it does not directly modify any of
the words in the original training trees, and proceeds to break up these unmodified
trees into the top-level events. After these events have been collected and counted, the
trainer selectively maps low-frequency words when deriving counts for the various con-
text (back-off) levels of the parameters that make use of bilexical statistics. If this map-
ping were performed uniformly, then it would be identical to mapping low-frequency
words prior to top-level event counting; this is not the case, however. We describe the
details of this unknown-word mapping in §5.8.2.

While there is a negligible yet detrimental effect on overall parsing performance
when one uses an unknown word threshold of 5 instead of 6, when this change is com-
bined with the “obvious” method for handling unknown words, there is actually a mi-
nuscule improvement in overall parsing performance (see §7.1, Figure 16).

�_�
This phrase was taken from a comment in one of Collins’ preprocessing Perl scripts.� *
As with many of the discovered discrepancies between the thesis and the implementation, we deter-

mined the different unknown word threshold by reverse-engineering, in this case by an analysis of the events
output by Collins’ trainer.
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5. Parameter Classes and Their Estimation

All parameters that generate trees in Collins’ model are estimates of conditional prob-
abilities. Even though the following overview of parameter classes presents only the
maximal contexts of the conditional probability estimates, it is important to bear in mind
that the model always makes use of smoothed probability estimates that are the linear
interpolation of several raw maximum-likelihood estimates, using various amounts of
context (we will explore smoothing in detail in §5.7).

Mapped versions of the set of nonterminals
In §§3.5 and 3.9, we saw how the raw Treebank nonterminal set is expanded to in-
clude nonterminals augmented with -A and -g. Although it is not made explicit in
Collins’ thesis, Collins’ model uses two mapping functions to remove these augmenta-
tions when including nonterminals in the history contexts of conditional probabilities.
Presumably this was done to help alleviate sparse data problems. We will notate the
“argument removal” mapping function as � and the “gap removal” mapping function
as � . For example,� � c NP-A-g e'g NP-g,� � c NP-A-g e'g NP-A and� � c � c NP-A-g e�e'g NP.

Since gap augmentations are only present in Model 3, the � function effectively is the
identity function in the context of Models 1 and 2.

5.1 The head parameter class
The head nonterminal is generated conditioning on its parent nonterminal label, as well
as the head word and head tag which they share, since parents inherit their lexical head
information from their head children. More specifically, an unlexicalized head nonter-
minal label is generated conditioning on the fully-lexicalized parent nonterminal. We
notate the parameter class as follows:��� c �t� � c �fe $����E$���� e (4)

5.2 The subcat parameter class
When the model generates a head child nonterminal for some lexicalized parent non-
terminal, it also generates a kind of subcategorization frame (subcat) on either side of
the head child, with the following maximal context:���;�#���`�/�_� c������5��� �;� � � c � c � e�e $�� c � c �fe�e $����d$���� e (5)�C�`�2�%�`�5�_� c������5��� �;� � � c � c � e�e $�� c � c �fe�e $����d$���� e (6)

Probabilistically, it is as though these subcats are generated with the head child, via
application of the chain rule, but they are conditionally independent.15 These subcats
may be thought of as lists of requirements on a particular side of a head. For example,
in Figure 8, after the root node of the tree has been generated (see §5.9), the head child
VP is generated, conditioning on both the parent label S and the head word of that��+

Using separate steps to generate subcats on either side of the head not only allows for conditional inde-
pendence between the left and right subcats, but also allows for these parameters to be separately smoothed
from the head-generation parameter.

12
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S(sat–VBD)

NP-A(John–NNP)

NNP(John–NNP)

John

VP(sat–VBD)

VBD(sat–VBD)

sat

Figure 8
A fully lexicalized tree. The VP node is the head child of S.

parent, sat–VBD. Before any modifiers of the head child are generated, both a left- and
right-subcat frame are generated. In this case, the left subcat is {NP-A} and the right
subcat is {}, meaning that there are no required elements to be generated on the right
side of the head. Subcats do not specify the order of the required arguments. They are
dynamically-updated multisets: when a requirement has been generated, it is removed
from the multiset and subsequent modifiers are generated conditioning on the updated
multiset.16

The implementation of subcats in Collins’ parser is even more specific: subcats are
multisets containing various numbers of precisely six types of items: NP-A, S-A, SBAR-
A, VP-A, g and miscellaneous. The “g” indicates that a gap must be generated, and is
applicable only to Model 3. Miscellaneous requirements include all nonterminals that
were marked as arguments in the training data that were not any of the other named
types. There are rules for determining whether NPs, Ss, SBARs and VPs are arguments,
and the miscellaneous arguments occur as the result of the argument-finding rule for
PPs, which states that the first non-PRN, non–part-of-speech tag that occurs after the
head of a PP should be marked as an argument, and therefore nodes that are not one of
the four named types can be marked.

5.3 The modifying nonterminal parameter class
As mentioned above, after a head child and its left and right subcats are generated, mod-
ifiers are generated from the head outward, as indicated by the modifier nonterminal
indices in Figure 1. A fully-lexicalized nonterminal has three components: the non-
terminal label, the head word and its part of speech. The generation of fully-lexicalized
modifying nonterminals is done in two steps, to allow for the parameters to be indepen-
dently smoothed, which, in turn, is done to avoid sparse data problems. These two steps
estimate the joint event of all three components using the chain rule. First, a partially-
lexicalized version of the nonterminal is generated, consisting of the unlexicalized label
plus the part of speech of its head word. These partially-lexicalized modifying nonter-
minals are generated conditioning on the parent label, the head label, the head word, the
head tag, the current state of the dynamic subcat and a distance metric. Symbolically,
the parameter classes are� � c � c � e;� � � c �fe $�� c � e $����E$����R$ ���I�5��� �;��$�� � e (7)� � c � c � e;� � � c �fe $;� c � e $����N$����E$ ���I����� �;��$/�¡� e (8)�_,

Our parsing engine allows an arbitrary mechanism for storage and discharge of requirements: they
can be multisets, ordered lists, integers (simply to constrain the number of requirements), or any other mech-
anism. The mechanism used is determined at run-time.

13
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NP

NP

NPB

JJ

short

NN

grass

NP

NPB

JJ

tall

NNS

trees

,

,

CC

and

NP

NPB

JJ

bushy

NNS

bushes
Figure 9
A tree containing both punctuation and conjunction.

where � denotes the distance metric.17 As discussed above, one of the two components
of this distance metric is the vi (“verb intervening”) predicate. The other is a predicate
that simply reports whether the current modifier is the first modifier being generated,
that is, whether u g w . The second step is to generate the head word itself, where, be-
cause of the chain rule, the conditioning context consists of everything in the histories
of equations (7) and (8) plus the partially-lexicalized modifier. As there are some inter-
esting idiosyncrasies with these head-word–generation parameters, we describe them
in more detail in §5.8.

5.4 The punctuation and coordinating conjunction parameter classes
5.4.1 Inconsistent model As mentioned in §3.8, punctuation is raised to the highest
position in the tree. This means that, in some sense, punctuation acts very much like
a coordinating conjunction, in that it “conjoins” the two siblings between which it sits.
Observing that it might be helpful for conjunctions to be generated conditioning on both
of their conjuncts, Collins introduced two new parameter classes in his thesis parser,�¢ � 	 � and

��£�£
.18

As per the definition of a conjoined phrase in §3.1, conjunction via a CC node or
a punctuation node always occurs post-head (i.e., as a right sibling of the head). Put
another way, if a conjunction or punctuation mark occurs pre-head, it is not generated
via this mechanism.19 Furthermore, even if there is arbitrary material between the right
conjunct and the head, the parameters effectively assume that the left conjunct is always
the head child. For example, in Figure 9, the rightmost NP (“bushy bushes”) is consid-
ered to be conjoined to the leftmost NP (“short grass”), which is the head child, even
though there is an intervening NP (“tall trees”).

The new parameters are incorporated into the model by requiring that all modifying
nonterminals be generated with two boolean flags: coord, indicating that the nonter-
minal is conjoined to the head via a CC, and punc, indicating that the nonterminal is
conjoined to the head via a punctuation mark. When either or both of these flags is true,
the intervening punctuation or conjunction is generated via appropriate instances of the� >

Throughout this paper we will use the notation ¤¦¥)§¨0_©_ª_« to refer to the three items that comprise a
fully-lexicalized left-modifying nonterminal, which are the unlexicalized label ¤I« , its head word §�¬7 and
its part of speech © ¬G , and similarly for right modifiers. We use ¤¥®©_ª_« to refer to the two items ¤I« and © ¬7
of a partially-lexicalized nonterminal. Finally, when we do not wish to distinguish between a left and right
modifier, we use ¯°¥)§¨0_©_ª_« , ¯°¥®©_ª±« and ¯¡« .�_Z

Collins’ thesis does not say what the back-off structure of these new parameter classes is, i.e., how they
should be smoothed. We have included this information in the complete smoothing table in the Appendix.�_²

In fact, if punctuation occurs before the head, it is not generated at all—a deficiency in the parsing
model that appears to be a holdover from the deficient punctuation handling in the model of (Collins, 1997).
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NPB

NN
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(b) NP
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NPB

NN

fire
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CC

and
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RB

ultimately

(c) NP
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NPB
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RB

ultimately

Figure 10
The Collins model assigns equal probability to these three trees.� ¢ � 	 � / � £¦£ parameter classes.

For example, the model generates the five children in Figure 9 in the following
order: first, the head child is generated, which is the leftmost NP (“short grass”), con-
ditioning on the parent label and the head word and tag. Then, since modifiers are
always generated from the head outward, the right sibling of the head, which is the
“tall trees” NP, is generated with both the punc and CC flags false. Then, the right-
most NP (“bushy bushes”) is generated with both the punc and CC booleans true,
since it is considered to be conjoined to the head child and requires the generation of
an intervening punctuation mark and conjunction. Finally, the intervening punctuation
is generated conditioning on the parent, the head and the right conjunct, including the
head words of the two conjoined phrases, and the intervening CC is similarly generated.
A simplified version of the probability of generating all these children is summarized
as follows: ³´ � c ��� � ���d$ K�W�OES�S $���� e �³´ � c �P� c q WRQ�QES $����Rµ e $ L�Y�J a g·¶ $ a X�XUW�V g¸¶ � ���I$����I$ K�WROESPS $��P� e �³´ � c �P� c±¹ YIS#ºEQES $�����µ e $ L�Y�J a g¼» $ a X�XUW�V g½» � ���d$����d$ K�W�OES�S $���� e �³´ ¢ � 	 � c , c , e � ���I$����I$����R$ ¹ YdS#ºEQES $����RµN$ K�WROESPS $��P� e �³´ £�£ c_¾�¾Ic OGJRV e � ���d$����d$����d$ ¹ YdS#ºEQES $����RµE$ KPWRORS�S $��P� e (9)

The idea is that, using the chain rule, the generation of two conjuncts and that which
conjoins them is estimated as one, large joint event.20

This scheme of using flags to trigger the
�¦¢ � 	 � / ��£�£ parameters is problematic, at

least from a theoretical standpoint, as it causes the model to be inconsistent. Figure
10 shows three different trees that would all receive the same probability from Collins’
model. The problem is that coordinating conjunctions and punctuation are not gener-
ated as first-class words, but only as triggered from these punc and coord flags, mean-
ing that the number of such intervening conjunctive items (and the order in which they
are to be generated) is not specified. So, for a given sentence/tree pair containing a con-
junction and/or a punctuation mark, there is an infinite number of similar sentence/tree
pairs with arbitrary amounts of “conjunctive” material between the same two nodes.
Because all of these trees have the same, non-zero probability, the sum ¿·À � c_Á e di-
verges, where Á is a possible tree generated by the model, meaning the model is incon-
sistent (Booth and Thompson, 1973). Another consequence of not generating post-head
conjunctions and punctuation as first-class words is that they do not count when calcu-
lating the head-adjacency component of Collins’ distance metric.

When emulating Collins’ model, instead of reproducing the
� ¢ � 	 � and

� £¦£
param-

eter classes directly in our parsing engine, we chose to use a different mechanism that
does not yield an inconsistent model, but still estimates the large joint event that was��^

In (9), for clarity we have left out subcat generation and the use of Collins’ distance metric in the
conditioning contexts. We have also glossed over the fact that lexicalized modifying nonterminals are actually
generated in two steps, using two differently-smoothed parameters.
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the motivation behind these parameters in the first place.

5.4.2 History mechanism In our emulation of Collins’ model, we use the history to es-
timate the joint event of generating a conjunction (or punctuation mark) and its two
conjuncts. The first big change is that we treat punctuation preterminals and CCs as
first-class objects, meaning that they are generated just like any other modifying non-
terminal. The second change is a little more involved.

First, we redefine the distance metric to consist solely of the vi predicate. Then, we
add to the conditioning context a mapped version of the previously-generated modifier
according to the following mapping function:

Â c%p � e'g ijjjk jjjlEÃ µUÄPÅ�Æ�Ä Ã ÇÉÈ u
g¸Ê

,¾�¾
ÇÉÈ
p �¦g ¾�¾ ,

Ã �UË��
¾
Ã ÇÉÈ

p �¦g , ÌGÍ p �¦g :,

Ã�Î ÄPÏ�Ð�Æ Ã otherwise.

(10)

where p � is some modifier
���

or � � .21 So, our the maximal context for our modifying
nonterminal parameter class is now defined as follows:� n c%pÑc � e�� � � c �fe $;� c � e $����N$����E$ �����5��� � �`�ÓÒ5Ô $ b H c%p ��e $ Â c%p � 
� e $ � u`ÕUÖ e (11)

where � u`ÕPÖ is a boolean-valued event that indicates whether the modifier is on the left
or right side of the head. By treating CC and punctuation nodes as first-class nontermi-
nals and by adding the mapped version of the previously-generated modifier, we have,
in one fell swoop, incorporated the “no intervening” component of Collins’ distance
metric (the u g×Ê

case of the
Â

function) and achieved an estimate of the joint event of a
conjunction and its conjuncts, albeit with different dependencies, i.e., a different appli-
cation of the chain rule. To put this parameterization change in sharp relief, consider
the abstract tree structure

P � � Ø � � H ¾�¾ � �
To a first approximation, under the old parameterization, the conjunction of some node� � with a head � and a parent

�
looked like³´ � c �t� �fe � ³´ � c � � $ a XPXUW�V g½» � � $ � e � ³´ £¦£ c�¾�¾ � � $ � $ � � e ,

whereas under the new parameterization, it looks like³´ � c �t� �fe � ³´ � c�¾�¾ � � $ � $ Ã µUÄ�Å�Æ�Ä Ã
e � ³´ � c � � � � $ � $ ¾�¾ e  

Either way, the probability of the joint conditional event ! � $ ¾P¾ $ � � � � ( is being esti-
mated, but with the new method, there is no need to add two, new specialized param-���

Originally, we also had an additional mechanism that attempted to generate punctuation and conjunc-
tions with conditional independence. One of our reviewers astutely pointed out that the mechanism led to
a deficient model (the very thing we have been trying to avoid), and so we have subsequently removed it
from our model. The removal leads to a 0.05% absolute reduction in F-measure (which in this case is also a
0.05% relative increase in error) on sentences of length ÙÛÚ�Ü words in §00 of the Penn Treebank. As this dif-
ference is not at all statistically significant (according to a randomized stratified shuffling test (Cohen, 1995)),
all evaluations reported in this paper are with the original model.
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eter classes, and it does not introduce inconsistency into the model. Using less simplifi-
cation, the probability of generating the five children of Figure 9 is now³´ � c ��� � ���I$ K�WROES�S $���� e �³´ n c ��� c q WRQPQES $�����µ e � �P�d$����d$ K�WROESPS $����d$�!G(P$ r O�DRS7Q $ Ã µUÄ�ÅPÆ�Ä Ã $

WIH1KPº q e �³´ n c , c , $ , e � ���d$����d$ K�WRORS�S $����N$�!G(P$ r O�D�SGQ $ Ã�Î Ä�Ï�Ð�Æ Ã $
WIH#KPº q e �³´ n c_¾�¾Ic OGJRV $ ¾�¾ e � ���d$����d$ K�WRORS�S $����N$�!G(P$ r O�D�SGQ $ Ã �UË��
¾
Ã $
WIH1KPº q e �³´ n c ��� cÝ¹ YIS1ºEQES $��P�Rµ e � ���d$����d$ K�WRORS�S $����N$�!G(P$ r O�D�SGQ $ ¾P¾ $ WIH#KPº q e (12)

As shown in §7.1, this new parameterization yields virtually identical performance to
that of the Collins model.22

5.5 The base NP model: a model unto itself
As we have already seen, there are several ways in which base NPs are exceptional
in Collins’ parsing model. This is partly because the flat structure of base NPs in the
Penn Treebank suggested the use of a completely different model by which to generate
them. Essentially, the model for generating children of NPB nodes is a “bigrams of
nonterminals” model. That is, it looks a great deal like a bigram language model, except
that the items being generated are not words, but lexicalized nonterminals. Heads of
NPB nodes are generated using the normal head-generation parameter, but modifiers
are generated always conditioning not on the head, but on the previously-generated
modifier. That is, we modify equations (7) and (8) to be� �IÞ ß;à�á c � c � e;� � � $ � c �f$�� e;� 
�� e (13)� ��Þ ß;à�á c � c � e�� � � $ � c �f$�� e;� 
�� e (14)

Though it is not entirely spelled out in his thesis, Collins considers the previously-
generated modifier to be the head child, for all intents and purposes. Thus, the subcat
and distance metrics are always irrelevant, since it is as though the current modifier
is right next to the head.23 Another consequence of this is that NPBs are never con-
sidered to be coordinated phrases (as mentioned in §3.12), and thus CCs dominated
by NPB are never generated using a

�C£¦£
parameter; instead, they are generated using

a normal modifying-nonterminal parameter. Punctuation dominated by NPB, on the
other hand, is still, as always, generated via

��¢ � 	 � parameters, but where crucially, the
modifier is always conjoined (via the punctuation mark) to the “pseudo-head” that is
the previously-generated modifier. Consequently, when generating some right modi-
fier � � , the previously-generated modifier on the right side of the head, � � 
�� , is never a
punctuation preterminal, but always the previous “real” (i.e., non-punctuation) preter-
minal.24

Base NPs are also exceptional with respect to determining chart item equality, the
comma pruning rule and general beam-pruning (see §6.2 for details).

5.6 Parameter classes for priors on lexicalized nonterminals
Two parameter classes that only make their appearance in Appendix E of Collins’ thesis
are those that compute priors on lexicalized nonterminals. These priors are used as a�`�

As described in (Bikel, 2002), our parsing engine allows easy experimentation with a wide variety
of different generative models, including the ability to construct history contexts from arbitrary numbers
of previously-generated modifiers. The mapping function â and the transition function ã presented in this
section are just two examples of this capability.���

This is the main reason that the cv (“contains verb”) predicate is always false for NPBs, as that
predicate only applies to material that intervenes between the current modifier and the head.� *

Interestingly, unlike the regular model, punctuation that occurs to the left of the head is generated when
it occurs within an NPB. Thus, this particular—albeit small—deficiency of Collins’ punctuation-handling does
not apply to the base NP model.
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crude proxy for the outside probability of a chart item (see (Baker, 1979; Lari and Young,
1990) for full descriptions of the Inside–Outside algorithm). Previous work (Goodman,
1997) has shown that the inside probability alone is an insufficient scoring metric when
comparing chart items covering the same span during decoding, and that some estimate
of the outside probability of a chart item should be factored into the score. A prior on the
root (lexicalized) nonterminal label of the derivation forest represented by a particular
chart item is used for this purpose in Collins’ parser.

The prior of a lexicalized nonterminal pÑc �f$�� e is broken down into two, separate
estimates using parameters from two new classes,

� ¢�ä �Óå ä;æ
and

� ¢�ä �Óå ä�ç�è
:��¢�ä �®å ä c%pÑc �f$�� e�e¨g¸��¢�ä �®å ä æ c �f$�� e � �¢�ä �Óå ä ç�è c%p � �f$�� e

where

³´ c%p � �f$�� e is smoothed with

³´ c�p � � e , and where estimates using the parameters
of the

�¢�ä �Óå ä æ
class are unsmoothed.

5.7 Smoothing weights
Many of the parameter classes in Collins’ model—and indeed, in most statistical pars-
ing models—define conditional probabilities with very large conditioning contexts. In
this case, the conditioning contexts represent some subset of the history of the genera-
tive process. Even if there were orders of magnitude more training data available, the
large size of these contexts would cause horrendous sparse data problems. The solution
is to smooth these distributions that are made rough primarily by the abundance of ze-
ros. Collins uses the technique of deleted interpolation, which smoothes the distributions
based on full contexts with coarser models that use less of the context, by successively
deleting elements from the context at each back-off level. As a simple example, the
head parameter class smoothes

� �Cé c �t� � $�� � $�� � e with
� �'ê c �ë� � $�� � e and

� �Cì c �t� �fe .
For some conditional probability ´ c_í �;î e , let us call the reduced context at the u th back-
off level ï � c î e , where typically ïdð c î eñg î . Each estimate in the back-off chain is
computed via maximum likelihood estimation, and the overall smoothed estimate is
computed using ò [ w smoothing weights for ò back-off levels, denoted ó ð $� � � �$/ó 	�
dz .
These weights are used in a recursive fashion: the smoothed version ôÖ ��g ô´ � c�í � ï � c î e�e
of an unsmoothed ML estimate Ö �¦g ³´ � c�í � ï � c î e�e at back-off level u is computed via the
formula ôÖ �¦g ó � Ö � Ã

c w [ ó ��e ôÖ �®õ � $ Ê vöu'÷öò [ wG$øôÖ 	�
� g Ö 	�
�  (15)

So, for example, with three levels of back-off, the overall smoothed estimate would be
defined as ôÖ ð g ó ð Ö ð Ã

c w [ ó ð e ? ó � Ö � Ã
c w [ ó � e Ö z T (16)

It is easy to prove by structural induction that ifÊ vùó � vúw and û�ü ³´ � c�í � ï � c î e�e�g wG$ Ê výu¨÷þò [ wG$
then û�üÿô´ ð c_í � ïNð c î e�e�g wU (17)

Each smoothing weight can be conceptualized as the confidence in the estimate
with which it is being multiplied. These confidence values can be derived in a number
of sensible ways; the technique used by Collins was adapted from that used in (Bikel
et al., 1997), which makes use of a quantity called the diversity of the history context
(Witten and Bell, 1991), which is equal to the number of unique futures observed in
training for that history context.
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5.7.1 Deficient model As mentioned, ò back-off levels require ò [ w smoothing weights.
Collins’ parser effectively uses ò weights, because the estimator always adds an ex-
tra, constant-valued estimate to the back-off chain. Collins’ parser hard-codes this ex-
tra value to be a vanishingly-small (but non-zero) “probability” of w Ê 
��� , resulting in
smoothed estimates of the formôÖ1ð g óRð1Ö�ð Ã

c w [ óEð e�� ó � Ö � Ã
c w [ ó � e�� ó z Ö z Ã

c w [ ó z e � w Ê 
������� (18)

when there are three levels of back-off. The addition of this constant-valued Ö 	 g w Ê 
���
causes all estimates in the parser to be deficient, as it ends up throwing away probability
mass. More formally, the proof leading to Equation (17) no longer holds: the “distribu-
tion” sums to less than one (there is no history context in the model for which there arew Ê ��� possible outcomes).25

5.7.2 Smoothing factors and smoothing terms The formula given in Collins’ thesis for
computing smoothing weights is ó � g � �� �

Ã
� � �

where � � is the count of the history context ï � c î e and � � is the diversity of that context.26

The multiplicative constant 5 is used to give less weight to the back-off levels with more
context, and was optimized by looking at overall parsing performance on the develop-
ment test set, Section 00 of the Penn Treebank. We call this constant the smoothing factor,
and denote it as 	�
 . As it happens, the actual formula for computing smoothing weights
in Collins’ implementation is

ó � gÑs � �  õ 
�� õ 
� �  if � � { Ê ,Ê
otherwise,

(19)

where 	 � is an unmentioned smoothing term. For every parameter class except the subcat
parameter class and

� ¢�ä �Óå ä�æ
, 	 �°g Ê

and 	�
 g �  Ê . For the subcat parameter class,	 � g �  Ê and 	�
 g Ê
. For

� ¢�ä �®å ä;æ
, 	 � g wU Ê and 	�
 g Ê  Ê . This curiously means that

diversity is not used at all when smoothing subcat-generation probabilities.27

The second case in (19) handles the situation where the history context was never
observed in training, i.e., where � � g � � g Ê

, which would yield an undefined value�`+
Collins used this technique to ensure that even futures that were never seen with an observed his-

tory context would still have some probability mass, albeit a vanishingly small one (Collins, p.c.). Another
commonly-used technique would be to back-off to the uniform distribution, which has the desirable property
of not producing deficient estimates. As with all of the Treebank- or model-specific aspects of the Collins
parser, our engine uses Equation (16) or (18) depending on the value of a run-time setting.��,

The smoothing weights can be viewed as confidence values for the probability estimates with which
they are multiplied. The Witten-Bell technique crucially makes use of the quantity ��«���� �  , the average
number of transitions from the history context �P«�¥���ª to a possible future. With a little algebraic manipulation,
we have � «�� ��«��«���� 0
a quantity that is at its maximum when ��«��! ;« and at its minimum when ��«"�$# , that is, when every future
observed in training was unique. This latter case represents when the model is most “uncertain”, in that the
transition distribution from �U«`¥��'ª is uniform and poorly-trained (1 observation per possible transition). Be-
cause these smoothing weights measure, in some sense, the closeness of the observed distribution to uniform,
they can be viewed as proxies for the entropy of the distribution %�¥'&�()�P«`¥*�'ª_ª .� >

As mentioned above, the +�,.-;«0/�- æ parameters are unsmoothed. However, due to the deficient esti-
mation method, they still have an associated lambda value, the computation of which, just like the subcat-
generation probability estimates, does not make use of diversity.
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Back-off
� � æ c ���  �  � � e

level
� � æ c � �  �  � � e

0 � c ���%e $��;�  $ a X�XGW�V $ L�Y�J a $�� c �fe $;� c � e $����N$����E$�� ��$ ���I����� �
1 � c ����e $��;�  $ a XPXUW�V $ L�YPJ a $�� c �fe $;� c � e $����E$�� �C$ �����5��� �
2 �;� 

Figure 11
Back-off levels for 1 ¬ æ / 132 æ , the modifier head-word generation parameter classes. 4 ¬7 and 5 ¬7
are respectively the head word and its part of speech of the nonterminal 6 « . This table is
basically a reproduction of the last column of Table 7.1 in Collins’ thesis.

Back-off level
� n æ c � n  �  � � e

0 � c%p ��e $�� n  $�� c �fe $;� c � e $����N$����E$ �����5��� � �`�ÓÒ5Ô $ b H c%p ��e $ Â c%p � 
� e $ � u`ÕUÖ
1 � c%p ��e $�� n  $�� c �fe $;� c � e $����E$ �����5��� � �`�ÓÒ5Ô $ b H c%p ��e $ Â c%p � 
�� e $ � u`ÕUÖ
2 � n 

Figure 12
Our new parameter class for the generation of head words of modifying nonterminals.

when 	 � g Ê
. In such situations, by making ó � g Ê

, all remaining probability mass
gets thrown to the smoothed back-off estimate, ôÖ �)õ � . This is a crucial part of the way
smoothing is done: if a particular history context ï � c î e has never been observed in
training, the smoothed estimate using less context, ï �®õ � c î e , is simply substituted as
the “best guess” for the estimate using more context; that is, ôÖ �¦g ôÖ �®õ � .28

5.8 Modifier head-word generation
As mentioned above in §5.3, fully-lexicalized modifying nonterminals are generated in
two steps. First, the label and part-of-speech tag are generated with an instance of

� � or� � . Next, the head word is generated via an instance of one of two parameter classes,� � æ or
� � æ . The back-off contexts for the smoothed estimates of these parameters is

specified in Figure 11. Notice how the last level of back-off is markedly different from
the previous two levels, in that it removes nearly all the elements of the history: in
the face of sparse data, the probability of generating the head word of a modifying
nonterminal is conditioned only on its part of speech.

5.8.1 Smoothing and the last level of back-off The table of Figure 11 is misleading,
however. In order to capture the most data for the crucial last-level of back-off, Collins
uses words that occur on either side of the head word, resulting in a general estimate
³´ c � � � e , as opposed to

³´ � æ c � �  � � �  e . Accordingly, in our emulation of Collins model,
we replace the left- and right-word parameter classes with a single modifier head-word
generation parameter class that, as with (11), includes a boolean � u`ÕPÖ component that is
deleted from the last level of back-off. See Figure 12.

Even with this change, there is still a problem. Every head word in a lexicalized
parse tree is the modifier of some other head word—except the word that is the head
of the entire sentence (i.e., the head word of the root nonterminal). In order to prop-
erly duplicate Collins’ model, an implementation must take care that the

� c � � � e model
includes counts for these important head words.29��Z

This fact will be crucial toward understanding how little the Collins parsing model relies on bilexical
statistics, as described in §7.2 and the supporting experiment shown in Figure 17.��²

In our implementation, we add such counts by having our trainer generate a “fake” modifier event
where the observed, lexicalized root nonterminal is considered a modifier of +TOP+, the hidden nonterminal
that is the parent of the observed root of every tree (see §5.9 for details on the +TOP+ nonterminal).
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S(sat–VBD)

NP-A(Fido–NNP)

NPB(Fido–NNP)

JJ

Faithful

NNP

Fido

ADVP(faithfully–RB)

RB

faithfully

VP(sat–VBD)

VBD

sat

Figure 13
The low-frequency word “Fido” is mapped to +UNKNOWN+, but only when it is generated, not
when it is conditioned upon. All the nonterminals have been lexicalized (except for
preterminals) to show where the heads are.

5.8.2 Unknown word mapping As mentioned above, instead of mapping every low-
frequency word in the training data to some special +UNKNOWN+ token, Collins’ trainer
instead leaves the training data untouched, and instead selectively maps words that ap-
pear in the back-off levels of the parameters from the

� � æ and
� � æ parameter classes.

Rather curiously, the trainer only maps words that appear in the futures of these param-
eters, but never in the histories. Put another way, low-frequency words are generated as
+UNKNOWN+, but are left unchanged when they are conditioned upon. For example, in
Figure 13, where we assume “Fido” is a low-frequency word, the trainer would derive
counts for the smoothed parameter´ � æ c Ã Ë��87�� Î

9 � Ã
� ��� - ÅI$������d$ ��:;:=< Õ g·Ê $ ´ � ò � g·Ê $/µE$�|��E$ SGO q $�|P}�~d$� � � e (20)

However, when collecting events that condition on “Fido”, the word would not be
mapped, such as the parameters´ � c?>8>Nc?>8> e � ���P}I$������N$ BdH2V�X e´ � æ c BRONH q º r YND � >8> $ >8> $����P}N$������d$ BIH2V�X e

This strange mapping scheme has some interesting consequences. First, imagine
what happens to words that are truly unknown, that never occurred in the training data.
Such words are mapped to the +UNKNOWN+ token outright before parsing. Whenever
the parser estimates a probability with this truly unknown word in the history, it will
necessarily throw all probability mass to the backed-off estimate ( ôÖ � , in our earlier nota-
tion), since +UNKNOWN+ effectively never occurred in a history context during training.

The second consequence is that the mapping scheme yields a “superficient”30 model,
if all other parts of the model are probabilistically sound (which is actually not the case
here). With a parsing model such as Collins’ that uses bilexical dependencies, generat-
ing words in the course of parsing is very much like a bigram language model: every
word is generated conditioning on some previously generated word, as well as some
hidden material. The only difference is that the word being conditioned upon is often
not the immediately-preceding word in the sentence. However, one could plausibly�`^

The term “deficient” is used to denote a model in which one or more estimated distributions sums to
less than 1. We use the term “superficient” to denote a model in which one or more estimated distributions
sums to greater than 1.
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Back-off level
� ÀA@ o ç�è c � c � e �  � � e � ÀA@ o æ c � �  � � e

0 +TOP+ �5$ � $ Ã Ä Î � Ã1 n/a �
Figure 14
Back-off structure for 13BDCAE ç�è and 1�B8C�E æ , which estimate the probability of generating F!G*4�HI5KJ
as the root nonterminal of a parse tree. 1 B8C�E ç�è is unsmoothed.

construct a consistent bigram language model that generates words with the same de-
pendencies as are in a statistical parser that uses bilexical dependencies derived from
head-lexicalization.

Collins (p.c.) notes that his parser’s unknown-word–mapping scheme can be made
consistent if one were to add a parameter class that estimates

³´ c � � Ã ËR�L7�� Î
9 � Ã

e
, where�NMPO �RQ ! Ã ËR�L7�� Î

9 � Ã ( . The values of these estimates for a given sentence would
be constant across all parses, meaning that the “superficiency” of the model would be
irrelevant when determining S7ÍUT�V�S�WÀ � c_Á ��X e .
5.9 The TOP parameter classes
It is assumed that all trees that can be generated by the model have an implicit non-
terminal +TOP+ that is the parent of the observed root. The observed, lexicalized root
nonterminal is generated conditioning on +TOP+ (which has a prior probability of 1.0)
using a parameter from the class

� À"@ o . This special parameter class is mentioned in a
footnote in Chapter 7 of Collins’ thesis. There are actually two parameter classes used
to generated observed roots, one for generating the partially-lexicalized root nontermi-
nal, the other for generating the head word of the entire sentence, which we will call� À"@ o ç�è and

� ÀA@ o æ , respectively. Figure 14 gives the unpublished back-off structure of
these two additional parameter classes.

Note that
� ÀA@ o æ backs off to simply estimating

³´ c � � � e . Technically, it should be
estimating

³´AY À c � � � e , which is to say the probability of a word occurring with a tag in
the space of lexicalized nonterminals. This is different from the last level of back-off in
the modifier head-word parameter classes, which is effectively estimating

³´ c � � � e in the
space of lexicalized preterminals. The difference is that in the same sentence, the same
head word can occur with the same tag in multiple nodes, such as “sat” occurring with
the tag VBD three times (instead of just once) in the tree shown in Figure 8. Despite
this difference, Collins’ parser uses counts from the (shared) last level of back-off of
the

� � æ /
� � æ parameters when delivering Ö � estimates for the

� À"@ o æ parameters. Our
parsing engine emulates this “count sharing” for

� ÀA@ o æ by default, by sharing counts
from our

� n æ parameter class.

6. Decoding

Parsing, or decoding, is performed via a probabilistic version of the CKY chart-parsing
algorithm. As with normal CKY, even though the model is defined in a top-down,
generative manner, decoding proceeds bottom-up. Collins’ thesis gives a pseudocode
version of his algorithm in an appendix. This section contains a few practical details.

6.1 Chart item equality
Since the goal of the decoding process is to determine the maximally-likely theory, if
during decoding a proposed chart item is equal (or, technically, equivalent) to an item
that is already in the chart, the one with the greater score survives. Chart item equality
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is closely tied to the generative parameters used to construct theories: we want to treat
two chart items as unequal if they represent derivation forests that would be considered
unequal according to the output elements and conditioning contexts of the parameters
used to generate them, subject to the independence assumptions of the model. For
example, for two chart items to be considered equal, they must have the same label (the
label of the root of their respective derivation forests’ subtrees), the same head word and
tag and the same left and right subcat. The must also have the same head label (that is,
label of the head child).

If a chart item’s root label is an NP node, its head label is most often an NPB node,
given the “extra” NP levels that are added during preprocessing to ensure that NPB
nodes are always dominated by NP nodes. In such cases, the chart item will contain a
back-pointer to the chart item that represents the base NP. Curiously, however, Collins’
implementation considers the head label of the NP chart item not to be NPB, but rather
the head label of the NPB chart item. In other words, to get the head label of an NP chart
item, one must “peek through” the NPB and get at the NPB’s head label. Presumably,
this was done as a consideration for the NPB nodes being “extra” nodes, in some sense.
It appears to have little effect on overall parsing accuracy, however.

6.2 Pruning
Ideally, every parse theory could be kept in the chart, and when the root symbol has
been generated for all theories, the top-ranked one would “win”. In order to speed
things up, Collins employs three different types of pruning. The first form of pruning
is to use a beam: the chart memoizes the highest-scoring theory in each span, and if a
proposed chart item for that span is not within a certain factor of the top-scoring item, it
is not added to the chart. Collins reports in his thesis that he uses a beam width of w Ê8Z .
As it happens, the beam width for his thesis experiments was w ÊL[ . Interestingly, there
is a negligible difference in overall parsing accuracy when this wider beam is used (see
§7.1, Figure 16). An interesting modification to the standard beam in Collins’ parser
is that for chart items representing NP or NP-A derivations with more than one child,
the beam is expanded to be w Ê�[ � Ö=\ . We suspect that Collins made this modification to
handle the greater perplexity associated with NPs after he added the base NP model.

The second form of pruning employed is using a comma constraint. Collins ob-
served that in the Penn Treebank data, 96% of the time, when a constituent contained a
comma, the word immediately following the end of the constituent’s span was either a
comma or the end of the sentence. So, for speed reasons, the decoder rejects all theories
that would generate constituents that violate this comma constraint.31 There is a sub-
tlety to Collins’ implementation of this form of pruning, however. Commas are quite
common within parenthetical phrases. Accordingly, if a comma in an input sentence
occurs after an open parenthesis and before a closing parenthesis or the end of the sen-
tence, it is not considered a comma for the purposes of the comma constraint. Another
subtlety is that the comma constraint should effectively not be employed when pursu-
ing theories of an NPB subtree. As it turns out, using the comma constraint also affects
accuracy, as shown in §7.1.

The final form of pruning employed is rather subtle: within each cell of the chart
that contains items covering some span of the sentence, Collins’ parser uses buckets
of items that all share the same root nonterminal label for their respective derivations.
Only 100 of the top-scoring items covering the same span with the same nonterminal���

If one generates commas as first-class words, as we have done, one must take great care in applying this
comma constraint, for otherwise, chart items that represent partially-completed constituents (i.e., constituents
for which not all modifiers have been generated) may be incorrectly rejected. This is especially important for
NPB constituents.
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Performance on Section 00
Model LR LP CBs 0 CBs v^] CBs F
Collins’ Model 2 89.75 90.19 0.77 69.10 88.31 89.97
Baseline (Model 2 emulation) 89.89 90.14 0.78 68.82 89.21 90.01
Clean-room Model 2 88.85 88.97 0.92 65.55 87.06 88.91

Figure 15
Overall parsing results using only details found in (Collins, 1997; Collins, 1999). The first two
lines show the results of Collins’ parser and those of our parser in its “complete” emulation
mode (i.e., including unpublished details). All reported scores are for sentences of length _a`=b
words. LR/LP are the primary scoring metrics, labeled precision and labeled recall, respectively.
CBs is the number of crossing brackets. 0 CBs and _$c CBs are the percentage of sentences with 0
and _$c crossing brackets, respectively. F (the “F-measure”) is the evenly-weighted harmonic
mean of precision and recall, or ¬ E�d ¬ 2êì�e ¬ E�f ¬ 2hg .
label are kept in a bucket, meaning that if a new item is proposed and there are already
100 items covering the same span with the same label in the chart, then it will be com-
pared to the lowest-scoring item in the bucket. If it has a higher score, it will be added to
the bucket and the lowest-scoring item will be removed; otherwise, it will not be added.
Apparently, this type of pruning has little effect, and so we have not duplicated it in our
engine.32

6.3 Unknown words and parts of speech
When the parser encounters an unknown word, the first-best tag delivered by Ratna-
parkhi’s tagger (Ratnaparkhi, 1996) is used. As it happens, the tag dictionary built up
when training contains entries for every word observed, even if it was a low-frequency
word. This means that when decoding, the output of the tagger is used only for those
words that are truly unknown, i.e., that were never observed in training. For all other
words, the chart is seeded with a separate item for each tag observed with that word in
training.

7. Evaluation

7.1 Effects of Unpublished Details
In this section we present the results of effectively doing a “clean-room” implementation
of Collins’ parsing model, that is, using only information available in (Collins, 1997;
Collins, 1999), as shown in Figure 15.

The clean-room model has an 10.6% increase in F-measure error when compared
to Collins’ parser, and an 11.0% increase in F-measure error compared to our engine
in its complete emulation of Collins’ Model 2. This is comparable to the increase in
error seen when removing such published features as the verb intervening component
of the distance metric, where F-measure error increases by 9.86%, or the subcat feature,
the removal of which results in a 7.62% increase in F-measure error.33 Therefore, while
the collection of unpublished details presented in §§3, 4, 5 & 6 is disparate, in toto they�;�

Although we have implemented a version of this type of pruning that limits the number of items that
can be collected in any one cell, that is, the maximum number of items that cover a particular span.�`�

These F-measures and the differences between them were calculated from experiments presented in
(Collins, 1999, page 201), which, unlike our reported numbers, were on all sentences, not just those of lengthÙ Ú�Ü words. As Collins notes, removing both the distance metric and subcat features results in a gigantic
drop in performance, since without both of these features, the model has no way to encode the fact that flatter
structures should be avoided in several crucial cases, such as for PPs, which tend to prefer one argument to
the right of their head children.
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Performance on Section 00
Model description LR LP CBs 0 CBs _$c CBs F

Collins’ Model 2 89.75 90.19 0.77 69.10 88.31 89.97
Baseline (Model 2 emulation) 89.89 90.14 0.78 68.82 89.21 90.01
Unknown word threshold = 5 and unknown
words handled in “obvious” way (see §4.3)

89.94 90.22 0.77 68.99 89.27 90.08

No training trees skipped (see §4.2) 89.85 90.12 0.78 68.71 89.16 89.98
Beam width = i.b +�j 89.90 90.14 0.78 68.93 89.16 90.02
Non-deficient estimation (see §5.7.1) 89.75 90.00 0.80 68.82 88.88 89.87
No comma constraint (see §6.2) 89.52 89.80 0.84 68.09 88.20 89.66
No universal k�G*4ml'5KJ model n 89.40 89.17 0.88 66.14 87.92 89.28
Clean-room Model 2 88.85 88.97 0.92 65.55 87.06 88.91

Figure 16
Effects of independently removing/changing individual details on overall parsing performance.
All reported scores are for sentences of length _R`ob words.

j
With beam width = i.b + , processing

time was 3.36 times longer than with standard beam ( i�b * ). n No count sharing was performed for1�BDCAE æ (see §5.9), and k�G*4!l'5�J estimates were side-specific (see §5.8.1).

are every bit as important to overall parsing performance as certain of the published
features.

This does not mean that the all details are equally important. Figure 16 shows the
effect of independently removing or changing certain of the more than 30 unpublished
details on overall parsing performance.34 Often, the detrimental effect is quite insignif-
icant, even in the performance-obsessed world of statistical parsing, and occasionally,
the effect is not even detrimental at all. That is why we do not claim importance of any
single unpublished detail, but rather that of their totality, given that several of the un-
published details are, most likely, interacting. However, we note that certain individual
details, such as the “universal ´ c � � � e model”, do appear to have a much more marked
effect on overall parsing accuracy than others.

7.2 Bilexical dependencies
The previous section accounts for the noticeable effects of all the unpublished details
of Collins’ model. But what of the details that were published? In Chapter 8 of his
thesis, Collins gives an account on the motivation of various features of his model, in-
cluding the distance metric, the model’s use of subcats (and their interaction with the
distance metric) and structural versus semantic preferences. In the discussion of this
last issue, Collins points to the fact that structural preferences—which, in his model, are
modeled primarily by the

� � and
� � parameters—often provide the right information

for disambiguating competing analyses, but that these structural preferences may be
“overridden” by semantic preferences. Bilexical statistics (Eisner, 1996), as represented
by the maximal context of the

� � æ and
� � æ parameters, serve as a proxy for such se-

mantic preferences, where the actual modifier word (as opposed to, say, merely its part
of speech) serves to indicate the particular semantics of its head. Indeed, such bilexi-
cal statistics were widely assumed for some time to be a source of great discriminative
power for several different parsing models, including that of Collins.

However, Gildea (2001) had re-implemented Collins’ Model 1 (essentially Model
2 but without subcats) and had altered the

� � æ and
� � æ parameters so that they no� *

As a reviewer pointed out, the use of the comma constraint is a “published” detail. However, the
specifics of how certain commas do not apply to the constraint is an “unpublished detail”, as mentioned in
§6.2.
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Back-off level Number of accesses Percentage
0 3,257,309 wG pLq
1 24,294,084 wGw7 Ê
2 191,527,387 rLsP p

Total 219,078,780 w ÊGÊ  Ê
Figure 17
Number of times our parsing engine was able to deliver a probability for the various levels of
back-off of the mod-word generation model, 1ut æ , when testing on Section 00, having trained on
Sections 02–21. In other words, this table reports how often a context in the back-off chain of1 t æ that was needed during decoding was observed in training.

longer had the top level of context that included the head word (he removed “Back-
off level 0”, as depicted in Figure 11). In other words, Gildea removed all bilexical
statistics from the overall model. Surprisingly, this resulted in only a 0.45% absolute
reduction in F-measure (3.3% relative increase in error). Unfortunately, this result was
not entirely conclusive, in that Gildea was only able to do a partial re-implementation
of Collins’ baseline model, the performance of which was not quite as good as that
of Collins’ parser.35 Training on Sections 02–21, we have duplicated Gildea’s bigram-
removal experiment, except that our chosen test set is Section 00 instead of Section 23
and our chosen model is the more widely-used Model 2. Using the mode that most
closely emulates Collins’ Model 2, with bigrams, our engine gets a recall of 89.89% and
a precision of 90.14% on sentences of length vvp Ê words (see Figure 19, Model w �)x Þ �)x ).
Without bigrams, performance drops only to R89.49%, P89.95%—an exceedingly small
drop in performance (see Figure 19, Model w �)x Þ � ). In an additional experiment, we
examined the number of times that the parser was able to deliver a requested probability
for the modifier-word generation model using the increasingly less-specific contexts of
the three back-off levels, while decoding Section 00. The results are in Figure 17. Back-
off level 0 indicates the use of the full history context, which contains the head child’s
head word. Note that probabilities making use of this full context, that is making use
of bilexical dependencies, are used only 1.49% of the time. Combined with the results
from the previous experiment, this suggests rather convincingly that such statistics are
far less significant than once thought to the overall discriminative power of Collins’
models, confirming Gildea’s result for Model 2.36

7.3 Choice of heads
If not bilexical statistics, then surely, one might think, head-choice is critical to the per-
formance of a head-driven, lexicalized statistical parsing model. Partly to this end, in
(Chiang and Bikel, 2002), we explored methods for recovering latent information in tree-
banks. The second half of that paper focused on a use of the Inside–Outside algorithm
to re-estimate the parameters of a model defined over an augmented tree space, where
the observed data were considered to be the gold-standard labeled bracketings found
in the Treebank, and the hidden data were considered to be the head lexicalizations,
one of the most notable tree augmentations performed by modern statistical parsers.
These EM experiments were motivated by the desire to overcome the limitations im-
posed by the heuristics that have been heretofore used to perform head lexicalization in�;+

The re-implementation was necessarily only partial, as Gildea did not have access to all the unpub-
lished details of Collins’ models that are presented in this paper.�`,

On a separate note, it may come as a surprise that the decoder needs to access more than 219 million
probabilities during the course of parsing the 1917 sentences of Section 00. Among other things, this certainly
points to the utility of caching probabilities (the 219 million are tokens, not types).
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Model LR LP CBs 0 CBs v^] CBs F
Collins’ Model 2 89.75 90.19 0.77 69.10 88.31 89.97
Baseline (Model 2 emulation) 89.89 90.14 0.78 68.82 89.21 90.01
Simplified head rules 88.55 88.80 0.86 67.25 87.42 88.67

Figure 18
Results on Section 00 with simplified head rules. The baseline model is our engine in its closest
possible emulation of Collins’ Model 2.

Parameter class 1 t 1 t æ Score
conditioning on 5�y 4zy 5�y 4zy LR LP CBs 0 CBs _$c CBs F

Model

{}|�~A� |�~ � � � �
89.89 90.14 0.78 68.82 89.21 90.01{ |�~A� | � � �
89.49 89.95 0.80 67.98 88.82 89.72{ |'� | � �
88.20 88.89 0.91 65.00 87.13 88.54{}|�~A� � � �
89.24 89.86 0.81 66.80 88.76 89.55{}|'� � �
88.01 88.96 0.91 63.93 86.91 88.48{ ��� �
87.01 88.75 0.96 61.08 86.00 87.87

Figure 19
Parsing performance with various models on Section 00 of the Penn Treebank. 1 t is the
parameter class for generating partially lexicalized modifying nonterminals (a nonterminal label
and part of speech). 1�t æ is the parameter class that generates the head word of a modifying
nonterminal. Together, 13t and 13t æ generate a fully-lexicalized modifying nonterminal. The
check marks indicate the inclusion of the head word 4 y and its part of speech 5 y of the
lexicalized head nonterminal F!G�5�y�HK4zy;J in the conditioning contexts of 1�t and 13t æ .

treebanks. In particular, it appeared that the head rules used in Collins’ parser had been
tweaked specifically for the English Penn Treebank. The promise of using EM would
mean that very little effort would need be spent on developing head rules, since EM
could take an initial model that used simple heuristics and optimize it appropriately
to maximize the likelihood of the unlexicalized (observed) training trees. To test this,
we performed experiments with an initial model trained using an extremely simpli-
fied head-rule set, where all rules were of the form “if the parent is X, then choose the
left/rightmost child”. A surprising side result was that, even with this simplified set of
head rules, overall parsing performance still remained quite high. Using our simplified
head-rule set for English, our engine in its “Model 2–emulation mode” achieved a re-
call of 88.55% and a precision of 88.80%, for sentences of length v 40 words in Section
00 (see Figure 18). So, contrary to our expectations, the lack of careful head choice is
not crippling in allowing the parser to disambiguate competing theories, and a further
indication that semantic preferences, as represented by conditioning on a head word,
rarely override structural ones.

7.4 Lexical dependencies matter
Given that bilexical dependencies are almost never used and barely affect overall pars-
ing performance, and given that the choice of head is not terribly critical either, one
might wonder what power, if any, head lexicalization is providing. The answer is that,
even when one removes bilexical dependencies from the model, there are still plenty
of lexico-structural dependencies, i.e., structures being generated conditioning on head
words, and head words being generated conditioning on structures.

To test the effect of such lexico-structural dependencies in our lexicalized PCFG-
style formalism, we experimented with the removal of the head tag � � and/or the head
word � � from the conditioning contexts of the

� n æ and
� n parameters. The results

are listed in Figure 19. Model w �)x Þ �)x shows our baseline, and Model w�� Þ � shows the
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effect of removing all dependence on the head word and its part of speech, with the
other models illustrating varying degrees of removing elements from the two parame-
ter classes’ conditioning contexts. Notably, including/removing the head word � � from
the

� n contexts appears to have a significant effect on overall performance, as shown
by moving from Model w �)x Þ � to Model w � Þ � and from Model w �)x Þ � to Model w � Þ � .
This reinforces the notion that particular head words have structural preferences, so that
making the

� n parameters dependent on head words would capture such preferences.
As for effects involving dependence on the head tag ��� , observe that when moving from
Model w �)x Þ � to Model w �)x Þ � , there is a small drop in both recall and precision, whereas
when making an analogous move from Model w � Þ � to Model w � Þ � , there is a drop in
recall, but a slight gain in precision (the two moves are analogous, in that in both cases,��� is dropped from the context of

� n æ ). It is not evident why these two moves do not
produce similar performance losses, but in both cases, the performance drops are small
relative to those observed when eliminating � � from the conditioning contexts, indi-
cating that head words matter far more than parts of speech for determining structural
preferences, as one would expect.

8. Conclusion

We have documented what we believe is the complete set of heretofore unpublished
details Collins used in his parser, such that, along with Collins’ thesis (Collins, 1999),
this paper contains all information necessary to duplicate Collins’ benchmark results.
Indeed, these as-yet-unpublished details account for an 11% relative increase in er-
ror from an implementation including all details to a clean-room implementation of
Collins’ model. We have also shown a cleaner and equally–well-performing method
for the handling of punctuation and conjunction, and we have revealed certain other
probabilistic oddities about Collins’ parser. We have analyzed not only the effect of the
unpublished details, but also re-analyzed the effect of certain well-known details, re-
vealing that bilexical dependencies are barely used by the model and that head choice
is not nearly as important to overall parsing performance as once thought. Finally, we
have performed experiments that show that the true discriminative power of lexical-
ization appears to lie in the fact that unlexicalized syntactic structures are generated
conditioning on the head word and head tag. These results on the lack of reliance on
bilexical statistics suggest that generative models still have room for improvement by
employing bilexical-class statistics, that is, dependencies among head-modifier word
classes, where such classes may be defined by, say, WordNet synsets. Such dependen-
cies might finally be able to capture the semantic preferences that were thought to be
captured by standard bilexical statistics, as well as alleviate the sparse data problems
associated with standard bilexical statistics. This is the subject of our current research.

Appendix: Complete List of Parameter Classes

This section contains tables for all parameter classes in Collins’ Model 3, with appro-
priate modifications and additions from the tables presented in Collins’ thesis. The
notation is that used throughout this paper. In particular, for notational brevity we
use pÑc �f$�� e�� to refer to the three items p � , � n  and � n  that constitute some fully-
lexicalized modifying nonterminal, and similarly pÑc � e � to refer to the two items p � and� n  that constitute some partially-lexicalized modifying nonterminal. The (unlexical-
ized) nonterminal-mapping functions � and � are defined at the beginning of §5. As a
shorthand, � c%pÑc � e � e�g � c%p � e $�� n  .

The head-generation parameter class,
� �

, gap-generation parameter class,
���

and
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subcat-generation parameter classes,
� �`�2���`�/�_�

and
�C�`�2���`�/�_�

, have back-off structures as
follows.

Back-off level
� � c �þ�  � � e ��� c�� �  � � e� �;�#���`�/� � c1�����5��� � � �  � � e� �`�2�%�`�5� � c������5��� � � �  � � e

0 � c �fe $����N$���� � c � c �fe�e $N� c � c � e�e $N���E$R���
1 � c �fe $E� � � c � c �fe�e $d� c � c � e�e $R� �
2 � c �fe � c � c �fe�e $N� c � c � e�e

The two parameter classes for generating modifying nonterminals that are not dom-
inated by a base NP,

� n and
� n æ , have the following back-off structures. Recall that

back-off level 3 of the
� n æ parameters includes words that are the heads of the observed

roots of sentences (that is, the head word of the entire sentence).

Back-off level
� n c1pÑc � e;� $ a X�XGW�V $ L�YPJ a �  � � e

0 � c �fe $�� c � e $R���E$R���R$d� �;�®Ò5Ô $ �����5��� � �`�ÓÒ5Ô $ � u`ÕUÖ
1 � c �fe $E� c � e $�� � $N� �`�ÓÒ5Ô $ �����5��� � �`�ÓÒ5Ô $ � u�ÕPÖ
2 � c �fe $R� c � e $E� �`�®Ò5Ô $ ���I�5��� � �;�®Ò5Ô $ � u`ÕPÖ

Back-off level
� n æ c � n  �  � � e

0 � c%pÑc � e���e $ a X�XUW�V $ L�Y�J a $E� c �fe $R� c � e $����E$����E$N� �`�ÓÒ5Ô $ �����5��� � �`�ÓÒ5Ô $ � u�ÕPÖ
1 � c�pÑc � e � e $ a X�XGW�V $ LPY�J a $E� c �fe $�� c � e $R� � $N� �`�ÓÒ5Ô $ ���I�5��� � �;�®Ò5Ô $ � u`ÕPÖ
2 � n 

The two parameter classes for generating modifying nonterminals that are children
of base NPs (NPB nodes),

� n Þ ß;à;á and
� n æ Þ ß�à;á , have the following back-off structures.

Back-off level 3 of the
� n æ Þ ß;à;á parameters includes words that are the heads of the ob-

served roots of sentences (that is, the head word of the entire sentence). Also, note that
there is no coord flag, as coordinating conjunctions are generated like regular modify-
ing nonterminals when they are dominated by NPB. Finally, we define p ð g � , that is,
the head nonterminal label of the base NP that was generated using a

� �
parameter.

Back-off level
� n Þ ß;à;á c�pÑc � e�� $ LPY�J a �  � � e � n æ Þ ß�à;á c � n  �  � � e

0
� $ pÑc �f$�� e � 
� $ � u`ÕPÖ p � $R� n  $ L�Y�J a $ � $ pÑc �f$�� e � 
� $ � u`ÕPÖ

1
� $ pÑc � e;� 
�� $ � u`ÕPÖ p � $�� n  $ L�YPJ a $ � $ pÑc � e�� 
� $ � u`ÕPÖ

2
� $ p � 
� $ � u`ÕUÖ � n 

The two parameter classes for generating punctuation and coordinating conjunc-
tions,

� ¢ � 	 � and
�C�`å�å ä Ò

, have the following back-off structures (Collins, p.c.), where� �K� ´ Ö is a flag that obtains the value p in the history contexts of
��¢ � 	 � parameters

and c in the history contexts of
� �`å�å ä Ò

parameters,� pÑc �f$�� e;� is the modifying preterminal that is being conjoined to the head child,� � ¢ / � � is the particular preterminal (part of speech tag) that is conjoining the
modifier to the head child (such as “CC” or “:”) and� � ¢ / � � is the particular word that is conjoining the modifier to the head child
(such as “and” or “:”).
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Back-off level
�C�`å�å ä Ò c � � �  � � e ���`å�å ä Ò æ c � � �  � � e�¢ � 	 � c � ¢ �  � � e �¢ � 	 � æ c � ¢ �  � � e

0 ���E$����E$ � $ � $ pÑc �f$�� e;� $��K� ´ Ö � �)� ¢ Ô $R���R$R���E$ � $ � $ pÑc �f$�� e;� $R�K� ´ Ö
1 ���E$ � $ � $ pÑc � e;� $��K� ´ Ö � �)� ¢ Ô $R���E$ � $ � $ pÑc � e;� $R�K� ´ Ö
2 �K� ´ Ö � �)� ¢ Ô

The parameter classes for generating fully-lexicalized root nonterminals given the
hidden root +TOP+,

� À"@ o and
� ÀA@ o æ , have the following back-off structures (identical

to the table in Figure 14).

Back-off level
� ÀA@ o ç�è c � c � e �  � � e � ÀA@ o æ c � �  � � e

0 +TOP+ �5$ � $ Ã Ä Î � Ã1 n/a �
The parameter classes for generating prior probabilities on lexicalized nonterminalspÑc � $�� e , �¢�ä �Óå ä æ and

�¢�ä �Óå ä ç�è
, have the following back-off structures, where prior is a

dummy variable to indicate that
�¦¢�ä �Óå ä æ

is not smoothed (although the
�¢�ä �Óå ä æ

parame-
ters still have an associated smoothing weight; see §5.7.2, footnote).

Back-off level
� ¢�ä �®å ä;æ c �f$E� �  � � e � ¢�ä �Óå ä�ç�è c1p �  � � e

0 prior �f$E�
1 prior �
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